Reactivity of *in situ* Generated Dihalomethyllithium towards Dicarboxylic Acid Diesters and Lactones: Synthetic Applications

José Barluenga,*a Luján Llavona,a Miguel Yus,b and José M Concellóna

^a Departamento de Química Organometálica, Universidad de Oviedo, E-33071 Oviedo, Spain

^b Departamento de Química Orgánica, Universidad de Alicante, E-03690 Alicante, Spain

(Received in UK 27 June 1991)

Abstract. The reaction of dicarboxylic acid diesters 1, with in situ generated dihalomethyllithium (1 1 4 molar ratio) at -78°C leads, after hydrolysis, to the corresponding dihalomethylketoesters 3 The same process using an excess of the carbenoid (1 4 molar ratio) yields the expected tetrahalodiketones 5 The reaction of these carbenoids with γ - and S-lactones 6 at -78 °C yields, after hydrolysis, 2-(dihalomethyl) γ - or δ -lactols 7 or 8, respectively. The reaction of lactols 7 or 8 with triethylsilane or allyltrimethylsilane in the presence of BF₃ OEt₂ affords the corresponding substituted tetrahydrofurans or pyrans 10 or 12. The use of ε -caprolactone as starting material in the reaction with dihalomethyllithium leads to the corresponding 1, 1-dihalo-7-hydroxy-2-heptanones.

INTRODUCTION

The reaction of only one ester group of dicarboxylic acid diesters has proven to be a valuable synthetic strategy for the preparation of many natural products ¹ So, the preparation of half-esters by selective enzymatic hydrolysis of dicarboxylic acid diesters has received much attention ² The addition of organolithium compounds to only one of both carbonyl groups of dicarboxylic acids diesters, it has not been reported in the literature ³ A similar transformation can be carried out using dicarboxylic acids derivatives with carbonyl groups of different reactivity,⁴ such as chlorocarbonylesters or using cyclic anhydrides ⁵ On the other hand, tetrahydropyrans and tetrahydrofurans are common structural elements in terpenoids, pheromones, antibiotics, C-glycosides and other bilogically active natural products ^{1,6} For this reason their synthesis has received much attention during the last decade ⁷ Recently we have described the synthesis of α,α -dihaloketones⁸ or α,α,α' -trihaloketones⁹ from *in suu* generated dihalomethyllithium¹⁰ and carboxylic or α -halocarboxylic acids esters, respectively. In the

^{*}Dedicated to the memory of Prof F Gaviña

present paper we describe a simple, easy and rapid method for the preparation of dihalomethylketoesters by reaction of 1 equivalent of dihalomethyllithium generated *in sutu* with dicarboxylic acid diesters The synthesis and reactivity of 2-(dihalomethyl)-2-hydroxytetrahydrofurans (y-lactols) and pyrans (s-lactols) starting from *in situ*-generated dihalomethyllithium and y- or δ -lactones, respectively is also described here.

RESULTS AND DISCUSSION

a) Reaction of dihalocarbenoids with dicarboxylic acid diesters

The successive treatment of several commercially available dicarboxylic acid diesters 1 with dichloromethane (2a), bromochloromethane (2b), or dibromomethane (2c) (1 1 4 molar ratio) and then with lithium dialkylamide (1.16 molar ratio) at -78°C led, after acid hydrolysis, to the corresponding dihalomethylketoesters 3 (Scheme 1 and Table 1)

Scheme 1 Reagents 1, R2NL1, 11, HCl / H2O

It is noteworthy that under these reaction conditions, the dihalogenated ketoester 3 was contaminated only with small amounts (<10%) of the starting diester 1 The isolation of the pure ketoester 3 was achieved easily by column chromatography on silica gel The reaction times were short (about 05 h) and the lithiation reaction was carried out with lithium disopropylamide for dibromomethane (2c) or chlorobromomethane (2b) and with lithium dicyclohexylamide for dichloromethane (2a)⁸ In general, the transformation of the ester function into ketone can be explained since the intermediate of the type 4 is stable under the reaction conditions due to the presence of electronegative halogen substituents,¹¹ and so the addition of two molecules of dihalomethyllithium to the ester group is not possible When the reaction was carried out with an excess of dihalomethyllithium the corresponding tetrahalogenated diketones 5 were obtained (Scheme 2 and Table 2) The generation of the corresponding carbenoids from 2a-c was done as described above

Table 1 Synthesis of Dihaloketoesters 3

Diester		Product 3		
	Dihalomethane	no	Yield, ^a %	Rf
1a	2a	3aa	65 (59)	0 37b
1b	2a	3ba	58 (52)	0 45 ^b
1c	2a	3ca	67 (60)	0 42°
1c	2b	3cb	53 (45)	0 32°
1c	2c	3cc	76 (70) ^d	0 40°
1 d	2a	3da	70 (62)	0 35°
1d	2b	3db	72 (63)	0 45f
1d	2c	3dc	77 (74)	0 42 ^f

^a Yield of crude product based on starting material 1, yield of isolated produt after column cromatography on silica gel (hexane-ether) is given in parenthesis ^b Hexane/ether 3/2 ^c Hexane/ether 9/1 ^d Dichloromethane/hexane 7/3 ^e Hexane/ether 4/1 ^f Hexane/ether 1/1

Scheme 2 Reagents 1, 2R2NL1, 11, HCl / H2O

J BARLUENGA et al

		Product 5		
ester	Dihalomethane	no	Yield, ^a %	mp(^o C)
	2a	5aa	72 (65)	47-48
C	2a	5ba	68 (60)	51-52
)	2b	5bb	62 (52)	69-70
2	2c	5bc	64 (57)	77-78

2 Synthesis of Tetrahaloketones 5

ield of crude product based on starting material 1, yield of isolated product after recrystallization (hexane) is given in lesis

action of Dihalocarbenoids with lactones

The successive treatment of different χ - and δ -lactones 6 with dichloromethane (2a), ochloromethane (2b) or dibromomethane (2c) (1 2 molar ratio) and lithiumdusopropylamide (1 2 ratio) at -78 °C afforded 2-(dihalomethyl)-2-hydroxytetrahydrofurans or pyrans 7 or 8, clively (Scheme 3 and Table 3) When it is possible a mixture of diastereoisomers was isolated ξ)

Scheme 3 Reagents 1, Pr2¹NL1, 11, HCl / H2O

The addition of dihalomethyllithium to the lactone takes place in a short time (ca 20 min) and no etition with the ring opening to give the corresponding ketoalcohol (see below) was observed. The lactol 7 or 8 is the only reaction product (>95%) and can be used without further purification. In ase of ϵ -caprolactone (6e) treatment with dihalomethyllithium led to the corresponding alomethyl)-7-hydroxy-2-heptanone 9. This ring fission is probably due to the instability of the ly formed addition product¹² (Scheme 4 and Table 4).

Lactone	Dihalomethane	Product				
		no	Yield, ^a %	mp ^b , or <i>R</i> _f		
6a	2a	7aa	60 (55)	70-74		
6a	2b	7ab ^c	71 (66)	74-78 ^d		
6a	2c	7ac	77 (70)	75-78		
6b	2a	7ba ^c	65 (58)	58-63 ^d		
6b	2b	7bb ^c	68 (61)	66-70 ^d		
6b	2c	7bc ^c	80 (75)	74-78 ^d		
6c	2a	7ca ^c	68 (65)	0.45 ^{e,f}		
6c	2b	7cb ^c	66 (60)	0 45°,g		
6c	2c	7cc ^c	73 (70)	0 47e,g		
6d	2a	8da	90 (85)	0 38 ^h		
6d	2b	8db ^c	66 (60)	0 37e,h		
6d	2c	8dc	73 (68)	0 35h		

Table 3. Synthesis of 2-(Dihalomethyl)lactols 7 and 8

^a Yield of crude product based on starting lactone 6, yields of isolated product after purification is given in parenthesis ^b From hexane ^c Mixture of diastereoisomers ^d Of the of mixture diasteroisomers ^e The major diastereoisomer could not be separed by TLC, R_f values refer to the corresponding mixture ^f Hexane/ether 7/3 ^g Hexane/ether 1/1 ^h Hexane/ether 4/1

Table 4 Synthesis o	of 1-(Dihalomet	hyl)-7-hidroxy-2	2-heptanones 9
---------------------	-----------------	------------------	----------------

		Product		
Lactone	Dihalomethane	no	Yield, ^a %	Rf ^b
бе	2a	9a	94	0 47
6e	2b	9b	99	0 44
6e	2c	9c	97	0 36

^a Yield of isolated product based on starting lactone 6d ^b Ether/hexane 4/1

The possibility of obtaining 2-(dihalomethyl)tetrahydrofurans or pyrans (10 or 11) was tested starting from the corresponding lactol 7 or 8 Thus, the reaction of this starting material with triethylsilane in the presence of BF₃ OEt₂¹³ yielded 10 or 11 respectively (Scheme 5 and Table 5)

This reaction took place, using the crude lactol 7 or 8 previously prepared, and the isolation of 10 or 11 required only removal of the solvent, without further purification In the case of 7cc, the mixture

Scheme 4 Reagents. 1, Pr2⁴NL1, 11, HCl / H2O

of diastereoisomers of the starting product was 1 1 (NMR) and the *trans/cis* ratio of 2-(dibromomethyl)-5-methyltetrahydrofuran (10cc) obtained was 2:1, this stereoselectivity is in agreement with literature data for similar compounds ¹³ These assignments are supported by ¹³C NMR data, in general the signals for the *cis* isomer appears at higher field compared to the corresponding *trans* compound,¹⁴

Scheme 5 Reagents 1, HS1Et3, BF3 OEt2, 11, NaHCO3/H2O

Table 5 Synthesis of 2-(Dihalomethyl)tetrahydrofurans 10 and tetrahydropyrans 11

Lactol			
	no	Yield, ^a %	Rfb
7aa	10aa	65	0 45¢
7ab	10ab ^d	81	0 35°
7ac	10ac	71	0 42
7cc	10cc ^d	89	0 42e
8dc	11dc	73	0 40

^a Yield of isolated product based on starting lactol 7^b From hexane ^c Hexane/ether 4/1 ^d Mixture of diastereoisomers ^c The major diastereoisomer could not be separated by TLC, R_f values refers to the corresponding mixture

which is attributed to more severe steric compression of substituents in the *cis* compound.¹⁵ In the case of **7ab** stereoselectivity was not observed and the *trans/cis* ratio obtained for product **10ab** was the same as for the mixture of diastereoisomers of the starting material (ca. 1:1).

Finally, the treatment of **7aa** and **7ca** with allyltrimethylsilane in the presence of BF3.OEt2¹⁵ afforded after removal of the solvents, the corresponding 2-allyl-2-(dichloromethyl)tetrahydrofurans 12aa and 12ca respectively, in 50-55% isolated yield (> 96% purity from NMR and GCL) For product 12ca an ca 3:2 diastereoisomers mixture (NMR, GCL) was obtained

EXPERIMENTAL

General Melting points were obtained with a Buchi apparatus Column chromatogrphy was done on Merck grade 60 silica gel (230-400 mesh) and TLC was carried out on Merck 60F-254 precoated silica gel on aluminium sheets IR spectra were determined with a Philips PU-9716 and Perkin-Elmer 1720-XFT spectrometers ¹H and ¹³C-NMR spectra were recorded on a Bruker AC-300 spectrometer, chemical shifts are given in (ppm) relative to tetramethylsilane as an internal standard, and J values are given in Hz Mass spectra were obtained with a Hewlett-Packard 5988A spectrometer Elemental analysis was carried out with a Perkin-Elmer 240 Elemental Analyser Starting dicarboxylic acid diesters, lactones, dichloromethane, bromochloromethane, dibromomethane, triethylsilane, allyltrimethylsilane, dicyclohexylamine and lithium dusopropylamine were of the best commercial grade available (Aldrich) and were used without further purification Solvents were dried before as usually All reactions were carried out under nitrogen and all glassware was dried before use

Preparation of Dihalomethylketoesters 3. General Procedure To a sturred solution of dihalomethane 2 (7 mmol) and the starting diester 1 (5 mmol) in ether (10 ml), was added a solution of lithium dialkylamide (8 mmol) in THF (10 ml) over 5 min at -78 °C Stirring was continued for 5 min at the same temperature and the mixture was hydrolysed with 6N aq HCl (10 ml) Then the solid was filtered, the filtrate was extracted with ether (3 x 5 ml), and the combined layers were dried (Na₂SO₄) The solvents were removed (15 torr) yielding a residue that contains the expected crude ketoester 3 Compound 3 was purified by column chromatography (hexane/ether) on silica gel Yields and R_f values are reported in Table 1 Spectral and analytical data follow

Methyl 5,5-dichloro-4-oxopentanoate (3aa). IR (film) 1720 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 27 (t, 2H, J=64, CH₂CO₂), 3 1 (t, 2H, J=64, CH₂CO₂), 3 1 (t, 2H, J=64, CH₂CO₂), 3 7 (s, 3H, CH₃), 5 9 (s, 1H, CH), ¹³C-NMR (CDCl₃) 27 7 (CH₂CO₂), 30 2 (CH₂CO), 51 8 (CH₃), 69 5 (CH), 172 2 (CO₂), 195 7 (CO), MS, m/z 171 (M⁺+4-OCH₃, <1%), 169 (M⁺+2-OCH₃, 10), 167 (M⁺-OCH₃, 15), 115 (100), 87 (14), 83 (11), 59 (25), 55 (26), Anal Calcd for C₆H₈Cl₂O₃ C, 36 21, H, 405 Found C, 36 0, H, 42

 $\begin{array}{l} \mbox{Methyl} \ 7.7\ dtchloro-6\ oxoheptanoate \ (3ba): \ IR \ (film) \ 1720 \ (C=O) \ cm^{-1}, \ ^{1}H\ -NMR \ (CDCl_3) \ 16\ -16\ 5 \ (m, \ 4H, \ CH_2CH_2CH_2CO), \ 23 \ (t, \ 2H, \ J=6\ 4, \ CH_2CO_2), \ 28 \ (t, \ 2H, \ J=6\ 5, \ CH_2CO), \ 36 \ (s, \ 3H, \ CH_3), \ 58 \ (s, \ 1H, \ CH), \ ^{13}C\ -NMR \ (CDCl_3) \ 22\ 9, \ 23\ 8 \ (CH_2CH_2CH_2CO), \ 33\ 4 \ (CH_2CO_2), \ 34\ 3 \ (CH_2CO), \ 51\ 3 \ (CH_3), \ 69\ 6 \ (CH), \ 173\ 3 \ (CO_2), \ 196\ 5 \ (CO), \ MS, \ m/z \ 199 \ (M^+ + 4\ -OCH_3, \ 2\%), \ 197 \ (M^+ + 2\ -OCH_3, \ 10), \ 195 \ (M^+ - OCH_3, \ 15), \ 143 \ (45), \ 115 \ (17), \ 111 \ (100), \ 83 \ (35), \ 73 \ (33), \ 59 \ (34), \ 55 \ (47), \ Anal \ Calcd \ for \ C_8H_{12}Cl_{2O} \ Cl_{2O} \ C, \ 42\ 31, \ H, \ 5\ 33\ \ Found \ C, \ 41\ 9, \ H, \ 5\ 2 \ \ 52\$

Ethyl (E)-5,5-*dichloro-4-oxopent-2-enoate* (3ca)· IR (film) 1718 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 13 (t, 3H, J=71, CH₃), 43 (q, 2H, J=71, CH₂), 60 (s, 1H, CHCl₂), 70 (d, 1H, J=157, CHCO₂), 75 (d, 1H, J=157, CHCO), ¹³C-NMR (CDCl₃) 140 (CH₃), 616 (CH₂), 690 (CHCl₂), 1318 (CHCO₂), 1357 (CHCO), 1643 (CO₂), 1845 (CO), MS, m/z 167

 $(M^+ + 2 \cdot OC_2H_5, 4\%)$, 165 $(M^+ - OC_2H_5, 7)$, 127 (100), 99 (16), 83 (12), 71 (12), 55 (13), 54 (10), 53 (11); Anal Calcd for $C_7H_8Cl_2O_3$; C, 39.84; H, 3.82. Found C, 39.5; H, 3.2.

Ethyl (E)-5-bromo-5-chloro-4-oxopent-2-enoate (3cb) IR (film) 1719 (C=O) cm⁻¹; ¹H-NMR (CDCl₃) 1 3 (t, 3H, J=71, CH₃), 4.2 (q, 2H, J=71, CH₂), 6.0 (s, 1H, CHClBr), 6.9 (d, 1H, J=15.6, CHCO₂), 7.5 (d, 1H, J=15.7, CHCO), ¹³C-NMR (CDCl₃) 13 9 (CH₃), 55 9 (CHBrCl), 61.5 (CH₂), 131 9 (CHCO₂), 135 4 (CHCO), 164 2 (CO₂), 184.3 (CO), MS, m/z 213 (M⁺+4-OC₂H₅, <2%), 211 (M⁺+2-OC₂H₅, 7), 209 (M⁺-OC₂H₅, 5), 127 (100), 99 (13), 71 (11), 55 (19), 54 (16), 53 (14), 39 (20), Anal. Calcd. for C₇H₈BrClO₃ C, 32.91; H, 3 16. Found C, 32 7; H, 3.3.

Ethyl (E)-5,5-*dibromo-4-axopent-2-enoate* (3cc): IR (film) 1703 (C=O) cm⁻¹; ¹H-NMR (CDCl₃) 1.3 (t, 3H, J=71, CH₃), 4.3 (q, 2H, J=71, CH₂), 5.9 (s, 1H, CHBr₂), 7.0 (d, 1H, J=15.5, CHCO₂), 7.6 (d, 1H, J=15.5, CHCO); ¹³C-NMR (CDCl₃) 14.0 (CH₃), 41.4 (CHBr₂), 61.5 (CH₂), 132.0 (CHCO₂), 164.3 (CO₂), 184.0 (CO), MS, m/z 257 (M⁺+4-OC₂H₅, <1%), 255 (M⁺+2-OC₂H₅, <1), 253 (M⁺-OC₂H₅, <1), 127 (100); Anal Calcd for C₇H₈Br₂O₃ C, 28.04; H, 2.69 Found C, 27.8, H, 2.7

Methyl o-(*dichloroacetyl*)*benzoate* (3da) IR (film) 1713 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 3.8 (s, 3 H, CH₃), 6.4 (s, 1H, CHCl₂), 7.5 (dd, 1H, J=11 and 7.5 CHCCO₂), 7.6 , 7.7 (2dt, 2H, J=14 and 7.5, 2xCHCHCCO), 8.0 (dd, 1H, J=11 and 7.5 CHCCO), ¹³C-NMR (CDCl₃) 52.8 (CH₃), 70.3 (CHCl₂), 127.3, 129.0, 129.9, 130.5, 132.9, 138.3 (C_{arom}), 166.1, (CO₂), 192.0 (CO), MS, m/z 219 (M⁺+4-OCH₃, <1%), 217 (M⁺+2-OCH₃, <1), 215 (M⁺-OCH₃, <1), 77(21), 76 (14), Anal Calcd for C₁₀H₈Cl₂O₃ C, 48.61, H, 3.26 Found C, 48.5, H, 3.1

Methyl o-(*bromochloroacetyl*)*benzoate* (3db): IR (film) 1719 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 3 9 (s, 3H, CH₃), 6 4 (s, 1H, CHBrCl), 7 5-8 0 (m, 5H_{arom}), ¹³C-NMR (CDCl₃) 52 9 (CH₃), 57 8 (CHBrCl), 127 3, 129 8, 130 0, 130 6, 132 9, 138 0 (C_{arom}), 166 0 (CO₂), 192 0 (CO), MS, m/z 263 (M⁺+4-OCH₃, <1%), 261 (M⁺+2-OCH₃, <1), 259 (M⁺-OCH₃, <1), 164 (10), 163 (100), 133 (14), 104 (11), 77 (23), 76 (20), 50 (13), Anal Calcd for C₁₀H₈BrClO₃ C, 41 20, H, 2 77 Found C, 41 0, H, 2 9

Methyl o-(*dibromoacetyl*)*benzoate* (3dc): IR (film) 1708 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 3 9 (s, 3H, CH₃), 6 4 (s, 1H, CHBr₂), 7 5-8 0 (m, 5H_{arom}), ¹³C-NMR (CDCl₃) 44 1 (CHBr₂), 52 8 (CH₃), 127 1, 129 9, 130 0, 130 4, 132 7, 137 4 (C_{arom}), 165 8 (CO₂), 191 3 (CO), MS, *m/z* 307 (M⁺+4-OCH₃, <1%), 305 (M⁺+2-OCH₃, <1), 303 (M⁺-OCH₃, <1), 163 (100), 133 (14), 77 (11), 76 (10), Anal Calcd for C₁₀H₈Br₂O₃ C, 35 75, H, 2 40 Found C, 35 4, H, 2 3

Preparation of Tetrahalodiketones 5 General Procedure The method was as the same described for 3 but using an excess of dihalomethane 2 (20 mmol) and lithium dialkylamide (22 mmol) Compounds 5 were purified by recristallization (hexane) Yields and melting points are reported in Table 2 Spectral and analytical data follow

l, l, 6, 6-Tetrachlorohexan-2, 5-duone (5aa): IR (KBr) 1732 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 3 2 (s, 4H, 2xCH₂), 5 9 (s, 2H, 2xCH), ¹³C-NMR (CDCl₃) 29 3 (2xCH₂), 69 3 (2xCH), 195 5 (2xC=O), MS, m/z 171 (M⁺+4-CHCl₂, 10%), 169 (M⁺+2-CHCl₂, 62), 167 (M⁺-CHCl₂, 100), 141 (10), 139 (16), 131 (12), 113 (19), 111 (30), 85 (39), 83 (59), 76 (23), 75 (10), Anal Calcd for C₆H₆Cl₄O₂ C, 28 61, H, 240 Found C, 28 5, H, 24

1,1,8,8-Tetrachlorooctan-2,7-dione (**5ba**): IR (KBr) 1733 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 17-175 (m, 4H, CH₂CH₂CH₂CO), 2 8-2 9 (m, 4H, 2xCH₂CO), 5 8 (s, 1H, 2xCH), ¹³C-NMR (CDCl₃) 22 8 (CH₂CH₂CH₂CH₂), 34.3 (2xCH₂CO), 69 7 (2xCH), 196 7 (2xC=O), MS, m/z 199 (M⁺ +4-CHCl₂, 4%), 197 (M⁺ +2-CHCl₂, 21), 195 (M⁺-CHCl₂, 32), 169 (17), 167 (26), 123 (12), 113 (19), 111 (12), 103 (18), 97 (19), 95 (11), 91 (13), 89 (10), 87 (11), 85 (63), 83 (100), 79 (30), 78 (12), 77 (23), 76 (32), 75 (16), 67 (42), 56 (14), 55 (47), 53 (12), 48 (13), 43 (15), 42 (16), 41 (37), 39 (24), Anal Calcd for C₈H₁₀Cl₄O₂ C, 34 32, H, 3 60 Found C, 34 1, H, 3 7

1,8-Dibromo-1,8-dichlorooctan-2,7-dione (5bb) IR (KBr) 1728 (C=O) cm⁻¹, ¹H-NMR(CDCl₃) 17-175 (m, 4H, CH₂CH₂CH₂CO), 29-295 (m, 4H, 2xCH₂CO), 59 (s, 1H, 2xCH); ¹³C-NMR (CDCl₃), 22.9 (CH₂CH₂CH₂CH₂), 34.4 (2xCH₂CO), 56.8 (2xCH), 196.5 (2xC=O); MS, m/z 243 (M⁺+4-CHBrCl, 14%), 241 (M⁺+2-CHBrCl, 50), 239 (M⁺-CHBrCl, 40), 213 (17), 211 (16), 157 (18), 155(11), 131 (28), 129 (94), 127 (78), 123 (22), 120 (12), 97 (19), 95 (13), 94 (11), 93

1, 1, 8, 8-Tetrabromooctan-2, 7-duone (5bc): IR (KBr) 1718 (C=O) cm⁻¹; ¹H-NMR (CDCl₃) 170-175 (m, 4H, CH₂CH₂CCO), 295-30 (m, 4H, 2xCH₂CO), 58 (s, 2H, 2xCH), ¹³C-NMR (CDCl₃) 231 (CH₂CH₂CH₂CH), 34.3 (2xCH₂CO), 42.7 (2xCH), 196 2 (2xC=O); MS, m/2 285 (M⁺ + 2-CHBr₂, 5%), 207 (18), 205 (16), 175 (13), 173 (31), 171 (12), 125 (23), 123 (100), 122 (21), 121 (88), 120 (17), 107 (14), 97 (38), 93 (51), 94 (17), 95 (50), 92 (15), 81 (39), 79 (39), 69 (13), 68 (10), 67 (11), 56 (16), 55 (69), 53 (19), 43 (36), 42 (64), 41 (70), 39 (45); Anal Calcd for C₈H₁₀Br₄O₂ C, 20 99, H, 2 20 Found C, 20 7, H, 2 1

Preparation of 2-(Dihalomethyl) δ -and δ -Lactols 7, 8 and 7-Hidroxy-1-(dihalomethyl)-2-heptanones 9. General Procedure To a sturred solution of lactone 6 (5 mmol) and dihalomethane 2 (10 mmol) in ether (10 ml) was added a solution of LDA (10 mmol) in THF (10ml) during 5 min at -78 °C After 20 min stirring at the same temperature, the mixture was quenched with 6N aqueous HCl (2ml) Then the solid was filtered, the filtrate was extracted with ether (3 x 5 ml), and the combined layers were dried (Na₂SO₄) The solvents were removed (15 torr) yielding the corresponding products 7, 8 or 9. Compounds 7 and 8 can be purified by recristallization or by column chromatography (hexane/ether) Yields, melting points and R_f values are reported in Tables 3 and 4 Spectral and analytical data follow

2-(Dichloromethyl)-2-hydroxytetrahydrofuran (7aa): IR (KBr) 3354 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 19-22 (m, 4H, CH₂CH₂C), 38 (s, 1H, OH), 40-42 (m, 2H, CH₂O), 57 (s, 1H, CH), ¹³C-NMR (CDCl₃) 244, 337 (CH₂CH₂C), 698 (CH₂O), 754 (CH), 1061 (COH), MS, m/z 157 (M⁺+4-OH, <1%), 155 (M⁺+2-OH, <1), 153 (M⁺-OH, <1), 87 (M⁺-CHCl₂, 100), 69 (13), 45 (21), 43 (28), 42 (16), 41 (21), Anal Calcd for C₅H₈Cl₂O₂ C, 35 11, H, 471 Found C, 349, H, 49

2-(Bromochloromethyl)-2-hydroxytetrahydrofuran (7ab): IR (KBr) 3362 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 2 1-2 2 (m, 4H, CH₂CH₂C), 3 0 (s, 1H, OH), 4 0-4 2 (m, 2H, CH₂O), 5 75, 5 8 (2s, 1H, CH), ¹³C-NMR (CDCl₃) 24 9 (CH₂CH₂CO), 34 3, 34 5 (CH₂COH), 64 2, 64 4 (CH), 70 1 (CH₂O), 105 8, 105 9 (COH), MS, m/2 201 (M⁺+4-OH, <1%), 199 (M⁺+2-OH, <1), 197 (M⁺-OH, <1), 87 (M⁺-CHBrCl, 100), 45 (13), 43 (18), 42 (10), 41 (14), Anal Calcd for C₅H₈BrClO₂ C, 27 87, H, 3 74 Found C, 27 5, H, 3 9

2-(Dibromomethyl)-2-hydroxytetrahydrofuran (7ac) IR (KBr) 3365 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 20-23 (m, 4H, CH₂CH₂C), 30 (s, 1H, OH), 40-42 (m, 2H, CH₂O), 57 (s, 1H, CH), ¹³C-NMR (CDCl₃) 250, 347 (CH₂CH₂C), 510 (CH), 701 (CH₂O), 1055 (COH), MS, m/z 175 (CHBr₂+4, 2%), 173 (CHBr₂+2, 4), 171 (CHBr₂, 2), 87 (M⁺-CHBr₂, 100), 45 (14), 43 (22), 42 (11), 41 (16), Anal Calcd for C₅H₈Br₂O₂ C, 23 10, H, 3 10 Found C, 22 8, H, 3 3

3-Bromo-2-(duchloromethyl)-2-hydroxytetrahydrofuran (7ba) IR (KBr) 3426 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 2 2-2 8 (m, 2H, CH₂CHBr), 2 9-3 1 (m, 1H, CHBr), 3 5-3 7 (1s, 1H, OH), 3 9-4 7 (m, 2H, CH₂O), 5 9, 6 2 (2s, 1H, CHCl₂), ¹³C-NMR (CDCl₃) 34 8, 35 1 (CH₂CHBr), 46 7, 52 5 (CHBr), 67 2, 68 4 (CH₂O), 73 2, 75 8 (CHCl₂), 102 7, 106 0 (COH), MS, m/z 167 (M⁺+2-CHCl₂, 58%), 165 (M⁺-CHCl₂, 57), 122 (57), 120 (52), 87 (5), 85 (44), 83 (19), 76 (13), 75 (12), 57 (15), 55 (16), 41 (100), 39 (25), Anal Calcd for C₅H₇BrCl₂O₂ C, 24 03, H, 2 82 Found C, 23 8, H, 3 0

3-Bromo-2-(bromochloromethyl)-2-hydroxytetrahydrofuran (7bb): IR (KBr) 3400 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 2 2-2 8 (m, 2H, CH₂CHBr), 3 0-3 1 (m, 1H, CHBr), 3 4-3 7 (m, 1H, OH), 4 0-4 7 (m, 2H, CH₂O), 5 85, 5 9, 6 2, 6 3 (4s, 1H, CHBrCl), ¹³C-NMR (CDCl₃) 34 7, 35 0, 35 4 (CH₂CHBr), 45 9, 47 5, 51 9, 53 3 (CHBr) 61 0, 61 4, 63 5, 64 6 (CHBrCl), 67 0, 67 1, 68 1, 68 6 (CH₂O), 102 2, 102 4, 105 7, 105 8 (COH), MS, *m*/z 167 (M⁺ +2-CHBrCl, 97%), 165 (M⁺-CHBrCl, 100), 139 (13), 137 (14), 131 (CHBrCl+4, 5), 129 (CHBrCl+2, 16), 127 (CHBrCl, 12), 122 (69), 121 (13), 120 (69), 109 (13), 107 (15), 85 (35), 76 (13), 57 (16), 55 (19), 41 (86), 39 (28), 31 (13), Anal Calcd for C₅H₇Br₂ClO₂ C, 20 40, H, 2 40 Found C, 20 1, H, 2 6

3-Bromo-2-(dibromomethyl)-2-hydroxytetrahydrofuran (7bc): IR (KBr) 3430 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 2 3-2 8 (m, 2H, CH₂CHBr), 3 0-3 1 (m, 1H, CHBr), 3 9-4 8 (m, 3H, CH₂O and OH), 5 8, 6 1 (2s, 1H, CHBr₂), ¹³C-NMR (CDCl₃) 34 7, 35 2 (CH₂CHBr), 46 6, 47 2 (CHBr), 50 3, 52 7 (CHBr₂), 66 8, 68 2 (CH₂O), 101 7, 105 2 (COH), MS, *m/z* 175 (CHBr₂+4, 7%), 173 (CHBr₂+2, 14), 171 (CHBr₂, 6), 167 (M⁺+2-CHBr₂, 92), 165 (M⁺-CHBr₂, 100), 139 (14), 137 (16), 122 (52), 121

(14), 120 (55), 109 (14), 107 (15), 94 (12), 93 (12), 92 (12), 85 (25), 57 (15), 55 (18), 41 (67), 39 (27), 31 (17), Anal Calcd for $C_5H_7Br_3O_2$ C, 17 72; H, 2.08 Found C, 17 4; H, 2 2.

2-(Duchloromethyl)-2-hydroxy-5-methyltetrahydrofuran (7ca): IR (film) 3393 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 1 2, 1 3 (2d, 3H, J=6.2 and 6 1 CH₃), 1.5-2.4 (m, 4H, CH₂CH₂), 3 2 (s, 1H, OH), 4 2-4.5 (2m, 1H, CHO), 5 70, 5 75 (2s, 1H, CHCl₂), ¹³C-NMR (CDCl₃) 20.2, 21.5 (CH₃), 32 0, 34 0, 34 4 (CH₂CH₂C), 75 4, 75.8 (CHCl₂), 76 9, 79.5 (CH₃CHO), 105 9, 106 1 (COH), MS, m/z 101 (M⁺-CHCl₂, 47%), 87 (CHCl₂+4, 12), 85 (CHCl₂+2, 52), 85 (CHCl₂+2, 51), 83 (CHCl₂, 100), 76 (19), 59 (15), 57 (17), 56 (29), 55 (70), 53 (11), 51 (14), 50 (26), 49 (18), 48 (48), 47 (18), 45 (73), 44 (12), 43 (94), 42 (39), 41(76), 40 (22), 39 (68), 38 (12), 37 (12); Anal. Calcd. for C₆H₁₀Cl₂O₂ C, 38 94; H, 5 45 Found C, 38.7, H, 5 7

2-(Bromochloromethyl-2-hydroxy-5-methyltetrahydrofuran (7cb): IR (film) 3397 (OH) cm⁻¹; ¹H-NMR (CDCl₃) 1 2, 1 3, 1 4 (3d, 3H, J=61, CH₃), 1 6-2.4 (m, 4H, CH₂CH₂), 3 2 (s, 1H, OH), 4 3-4 6 (m, 2H,CHO), 5 73, 5,74, 5,75 5,76 (4s, 1H, CHBrCl); ¹³C-NMR (CDCl₃) 20.2, 21.5 (CH₃), 32 1, 32.2, 32.3, 34 1, 34.3, 34 6, 34.8 (CH₂CH₂), 64 1, 64 2, 64 6 (CHBrCl), 76 9, 79.5 (CHO), 105.6, 105.7, 105.8 (COH), MS, m/z 131 (CHBrCl+4, 7%), 129 (CHBrCl+2, 26), 127 (CHBrCl, 21), 101 (M⁺-CHBrCl, 63), 83 (18), 79 (10), 76 (12), 59 (13), 57 (12), 56 (22), 55 (59), 53 (11), 51 (12), 50 (14), 48 (21), 45 (48), 44 (11), 43 (100), 42 (31), 41 (63), 40 (30), 39 (59), Anal. Calcd for C₆H₁₀BrClO₂ C, 31 40, H, 4 39 Found C, 31 2; H, 4 5

2-(Dibromomethyl)-2-hydroxy-5-methyltetrahydrofuran (7cc): IR (film) 3397 (OH) cm⁻¹; ¹H-NMR (CDCl₃) 1 2, 1 3 (2d, 3H, J=6 1, CH₃), 1 6-2.4 (m, 4H, CH₂CH₂), 3 1 (s, 1H, OH), 4 3-4 6 (m, 1H, CHO), 5 70, 5 75 (2s, 1H, CHBr₂), ¹³C-NMR (CDCl₃) 20.3, 21 6 (CH₃), 32.3, 32 5, 34 5, 35 1 (CH₂CH₂), 51 1, 51 5 (CHBr₂), 77 0, 79 5 (CHO), 105 2, 105 4 (COH), MS, m/z 175 (CHBr₂+4, 7%), 173 (CHBr₂+2, 15), 171 (CHBr₂, 8), 122 (10), 120 (10), 101 (M⁺-CHBr₂, 100), 94 (13), 93 (10), 92 (16), 83 (28), 81 (16), 79 (11), 59 (14), 57 (13), 56 (18), 55 (62), 53 (11), 45 (60), 44 (10), 43 (80), 42 (29), 41 (64), 40 (18), 39 (52), Anal Calcd for C₆H₁₀Br₂O₂ C, 26 31, H, 3 68 Found C, 26 1, H, 3 8

2-(Duchloromethyl)-2-hydroxytetrahydropyran (8da): IR (film) 3420 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 15-20 (m, 6H, CH₂CH₂CH₂C), 2.8 (s, 1H, OH), 3.8-40 (m, 2H, CH₂O), 56 (s, 1H, CH), ¹³C-NMR (CDCl₃) 184, 243, 294 (CH₂CH₂CH₂C), 62 2 (CH₂O), 776 (CH), 95.8 (COH), MS, m/z 126 (M⁺-C₄H₁₀, 10%), 101 (M⁺-CHCl₂, 100), 85 (17), 83 (73), 76 (11), 59 (19), 57 (24), 56 (81), 55 (85), 43 (25), 42(16), 41 (44), 39 (23), Anal Calcd for C₆H₁₀Cl₂O₂ C, 3894, H, 545 Found C, 387, H, 56

2-(Bromochloromethyl)-2-hydroxytetrahydropyran (8db): IR (film) 3426 (OH) cm⁻¹, ¹H-NMR (CDCl₃) 1 5-20 (m, 6H, CH₂CH₂CH₂C), 2.8 (s, 1H, OH), 3 8-40 (m, 2H, CH₂O), 5 60, 5 65 (2s, 1H, CHBrCl), ¹³C-NMR (CDCl₃) 18 5, 24 1, 24 2, 29 2, 29.3 (CH₂CH₂CH₂C), 62 2 (CH₂O), 66 7, 67 1 (CHBrCl), 95 2, 95 3 (COH), MS, m/z 131 (CHBrCl+4, 3%), 129 (CHBrCl+2, 14), 127 (CHBrCl, 10), 101 (M⁺-CHBrCl, 100), 91 (14), 83 (56), 76 (11), 59 (15), 57 (30), 56 (45), 55 (80), 43 (28), 42 (16), 41 (28), 40 (16), 39 (17), Anal Calcd for C₆H₁₀BrClO₂ C, 31 40, H, 4 39 Found C, 31 1, H, 4 5

2-(Dibromomethyl)-2-hydroxytetrahydropyran (8dc): IR (film) 3441 (OH) cm⁻¹; ¹H-NMR (CDCl₃) 15-20 (m, 6H, CH₂CH₂CH₂C), 28 (s, 1H, OH), 38-40 (m, 2H, CH₂O), 56 (1s, 1H, CH), ¹³C-NMR (CDCl₃) 19 1, 24 4, 30 0 (CH₂CH₂CH₂C), 54 6 (CH), 62 7 (CH₂O), 94 9 (COH), MS, m/z 175 (CHBr₂+4, 5%), 173 (CHBr₂+2, 10), 171 (CHBr₂, 5), 122 (10), 120 (10), 101 (M⁺-CHBr, 100), 83 (51), 59 (11), 57 (22), 56 (13), 55 (66), 43 (21), 42 (11), 41 (17), 39 (11), Anal Calcd for C₆H₁₀Br₂O₂ C, 26 31, H, 3 68 Found C, 26 1, H, 38

1,1-Dichloro-7-hydroxyheptan-2-one (9a): IR (film) 3387 (OH), 1729 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 1 2-16 (m, 6H, CH₂CH₂CH₂CH₂O), 2 6 (t, 2H, J=7 2, CH₂CO), 3 4 (t, 2H, J=6 4, CH₂OH), 4 7 (s, 1H, OH), 5 7 (s, 1H, CH), ¹³C-NMR (CDCl₃) 23 2, 24 8, 31 8, 34 9 (CH₂CH₂CH₂CH₂CO), 61 8 (CH₂OH), 69 6 (CH), 197 1 (CO), MS, *m/z* 115 (M⁺-CHCl₂, 14%), 97 (26), 85 (14), 83 (17), 79 (15), 76 (12), 73 (17), 69 (100), 55 (41), 43 (20), 42 (13), 41 (76), 39 (28), Anal Calcd for C₇H₁₂Cl₂O₂ C, 42 23, H, 6 07 Found C, 42 0, H, 6 2

1-Bromo-1-chloro-7-hydroxyheptan-2-one (9b): IR (film) 3382 (OH), 1734 (C=O) cm⁻¹, ¹H-NMR (CDCl₃) 1 3-1 9 (m, 6H, CH₂CH₂CH₂CH₂O), 2.9 (t, 2H, *J*=7 2, CH₂CO), 3 7 (t, 2H, *J*=6 5, CH₂OH) 5 2 (s, 1H, OH), 5 8 (s, 1H, CH), ¹³C-NMR (CDCl₃) 23 5, 24 8, 31 9, 34 8 (CH₂CH₂CH₂CH₂CCH₂CO), 56 9 (CH), 62 0 (CH₂OH), 197 0 (CO), MS, *m/z* 131 (CHBrCl+4, 4%), 129 (CHBrCl+2, 16), 127 (CHBrCl, 12), 115 (16), 97 (28), 79 (16), 76 (21), 73 (15), 69 (80), 57 (12), 55 (46), 53 (14), 50 (11), 48 (17), 43 (28), 42 (24), 41 (100), 40 (10), 39 (68), Anal Calcd for C₇H₁₂BrClO₂ C, 34 52, H, 4 97 Found C, 34 2, H, 5 2

I,1-Dibromo-7-hudroxyheptan-2-one (9c): IR (film) 3376 (OH), 1719 (C=O) cm⁻¹, ¹H-NMR (CDCCl₃) 1 3-17 (m, 6H, CH₂CH₂CH₂CH₂O), 2.6 (s, 1H, OH), 2.9 (t, 2H, J=72, CH₂CO), 3.6 (t, 2H J=6.5, CH₂OH), 5.8 (s, 1H, CH), ¹³C-NMR (CDCl₃) 23.8, 24.8, 32.0, 34.7 (CH₂CH₂CH₂CH₂CO) 42.8 (CH), 62.0 (CH₂OH), 196.8 (CO), MS, *m/z* 175 (CHBr₂+4, 7%), 173 (CHBr₂+2, 15), 171 (CHBr₂, 7), 122 (17), 120 (17), 115 (22), 97 (30), 94 (13), 92 (13), 79 (15), 73 (13), 69 (65), 57 (12), 55 (41), 53 (14), 43 (27), 42 (25), 41 (100), 40 (11), 39 (75), Anal Calcd for C₇H₁₂Br₂O₂ C, 29 20, H, 4 20 Found C, 29 0, H, 44

Preparation of 2-Dihalomethyltetrahidrofurans 10, 2-Dihalomethyltetrahidropyrans 11 and 2-Allyl-2-(dichloromethyl)tetrahydrofurans 12. To a stirred solution of b- or δ - lactol 7 or 8 (4 mmol) in dichloromethane (20 ml) was added triethylsilane or allyltrimethylsilane (16 mmol) and BF₃ OEt₂ (24 mmol) at -78 °C Stirring was continued for 1h at the same temperature and them over night allowing it to warm to room temperature. The mixture was hidrolysed with saturated aqueous NaHCO₃ (5 ml), extracted with dichloromethane (3 x 5 ml) and the combined layers were dried (Na₂SO₄). The solvents were removed (15 torr) yielding a residue that contained the expected crude products 10, 11 or 12 with more than 96 % purity (NMR, CGL). Yields and R_f values of products 10 and 11 are reported in Table 5 Spectral and analytical data follow

2-(Duchloromethyl)tetrahydrofuran (10an) IR (film) 1069 (CO) cm⁻¹, ¹H-NMR (CDCCl₃) 1 8-2 1 (m, 4H, CH₂CH₂CH), 3.8-4 0 (m, 2H, CH₂O), 4 2-4 3 (m, 1H, CHO), 5 6 (d, 1H, J = 5 7, CHCl₂), ¹³C-NMR (CDCl₃)25 8, 27 6 (CH₂CH₂CH), 69 7 (CH₂O), 74 2 (CHCl₂), 82 6 (CHO), MS, m/z 87 (CHCl₂+4, 3%), 85 (CHCl₂+2, 14), 82 (CHCl₂, 23), 71 (C₄H₇O, 100), 53 (15), 51 (11), 49 (15), 48 (12), 43 (45), 42 (19), 41 (41), 40 (11), 39 (37), Anal Calcd for C₅H₈Cl₂O C, 38 74, H, 5 20 Found C, 38.5; H, 5 4

2-(Bromochloromethyl)tetrahydrofuran (10ab) IR (film) 1061 (CO) cm⁻¹, ¹H-NMR (CDCCl₃) 18-22 (m, 4H, CH₂CH₂CH), 3 8-4 0 (m, 2H, CH₂O), 4 2-4 3 (m, 1H, CHO), 5 7 (d, 1H, J = 4 6, CHBrCl), ¹³C-NMR (CDCl₃) 25 7, 25 8, 27 8 28 7 (CH₂CH₂CH), 62 2, 62 9 (CHBrCl), 69 5, 69 7 (CH₂O), 82 6, 82 7 (CHO), MS, m/z 200 (M⁺+2, 4%), 198 (M⁺, 24), 157 (11), 155 (15), 142 (16), 140 (15), 131 (CHBrCl+4, 28), 129 (CHBrCl+2, 100), 127 (CHBrCl, 77), 123 (20), 122 (24), 121 (32), 120 (28), 119 (35), 108 (11), 107 (25), 106 (12), 105 (22), 71 (C₄H₇O, 85), 43 (11), Anal Calcd for C₅H₈BrClO C, 30 11, H, 404 Found C, 30 0, H, 4 2

2-(Dibromomethyl)tetrahydrofuran (10ac) IR (film) 1060 (CO) cm⁻¹, ¹H-NMR (CDCCl₃) 19-2 3 (m, 4H, CH₂CH₂CH), 39-4 0 (m, 2H, CH₂O), 42-4 3 (m, 1H, CHO), 57 (d, 1H, J = 47, CHBr₂), ¹³C-NMR (CDCl₃) 26 0, 29 3 (CH₂CH₂CH), 49 3 (CHBr₂), 69 9 (CH₂O), 82 9 (CHO), MS, m/z 244 (M⁺ +2, 2%), 71 (C₄H₇O, 100), 43 (18), 41 (11), Anal Calcd for C₅H₈Br₂O C, 24 62, H, 331 Found C, 24.3, H, 35

2-(Dibromomethyl)-5-methyltetrahydrofuran (10cc) IR (film) 1084 (CO) cm⁻¹, ¹H-NMR (CDCCl₃) 1 2, 1 3 (2d, 3H, J = 60, CH₃), 2 0-2 4 (m, 4H, 2xCH₂), 4 1-4 5 (m, 2H, 2xCHO), 5 6, 5 7 (2d, 1H, J = 57, CHBr₂), ¹³C-NMR (CDCl₃) 20 6, 20 8 (CH₃), 29 3, 29 7, 32 6, 33 8 (2xCH₂) 49 1, 50 1 (CHBr₂), 77 2, 77 5 (CHOCH₃), 82 5, 83 0 (CHCHBr₂), MS, m/z 175 (CHBr₂+4, 3%), 173 (CHBr₂+2, 6), 171 (CHBr₂, 3), 95 (14), 94 (11), 93 (16), 92 (10), 85 (C₅H₉O, 100), 83 (13), 82 (10), 81 (47), 79 (18), 67 (15), 57 (18), 55 (20), 53 (60), 52 (10), 51 (25), 50 (18), 43 (82), 42 (34), 41 (75), 40 (15), 39 (89), 38 (19), Anal Calcd for C₆H₁₀Br₂O C, 27 94, H, 3 91 Found C, 27 6, H, 4 1

2-(Dibromomethyl)tetrahydropyran (11dc) IR (film) 1074 (CO) cm⁻¹, ¹H-NMR (CDCCl₃) 1.5-2.0 (m, 6H, CH₂CH₂CH₂CH), 3.5-3.6 (m, 2H, CH₂O), 4.1-4.15 (m, 1H, CHO), 5.6 (d, 1H, J = 4.2, CHBr₂), ¹³C-NMR (CDCl₃) 22.2, 25.0, 27.5 (CH₂CH₂CH₂CH), 47.6 (CHBr₂), 68.6 (CH₂O), 80.8 (CHO), MS, m/z 85 (M⁺-CHBr₂, 100%), 41 (12), Anal Calcd for C₆H₁₀Br₂O C, 27.94, H, 3.91 Found C, 27.7, H, 4.1

2-Ally-2-(dichloromethyl)tetrahydrofuran (12aa) $R_f = 0.47$ (hexane), IR (film) 3078, 1641 (CH₂=CH), 1056 (CO) cm⁻¹, ¹H-NMR (CDCCl₃) 1 8-2 3 (m, 4H, CH₂CH₂C), 2 4-2 6 (m, 2H, CH₂CH=C), 3 95, 4 0 (2d, 2H, J=5 8, CH₂O), 5 15, 5 2 (2d, 2H, J=6 0 and 10 0, CH₂=CH), 5 7 (s, 1H, CHCl₂), 5 8-5 9 (m, 1H, CH=CH₂), ¹³C-NMR (CDCl₃) 26 4, 31 5 (CH₂CH₂C), 41 0 (CH₂CH=C), 70 3 (CH₂O), 78 0 (CHCl₂), 87 8 (CO), 119.2 (CH₂=CH), 132 4 (CH=CH₂), MS, m/z 157 (M⁺+4-CH₂CH=CH₂, 10%), 155 (M⁺+2-CH₂CH=CH₂, 56), 153 (M⁺-CH₂CH=CH₂, 81), 113 (16), 111 (64), 87 (CHCl₂+4, 17), 85 (CHCl₂+2, 42), 83 (CHCl₂, 64), 76 (15), 69 (26), 65 (11), 63 (11), 53 (24), 51 (18), 42 (26), 41 (100), 40 (27), 39 (90), 38 (11), Anal Calcd for $C_8H_{12}Cl_2$ C, 49 25, H, 6 20 Found C, 49 0; H, 6 5

2-Allyl-2-(dichloromethyl)-5-methyltetrahydrofuran (12ca) $R_f = 0.4$ (hexane), IR (film) 3079, 1642 (CH₂=CH), 1078 (CO)cm⁻¹; ¹H-NMR (CDCCl₃) 1 2 (2d, 3H, *J*=60, CH₃), 18-2.3 (m, 4H, CH₂CH₂C), 2 4-2.5 (m, 2H, CH₂CH=C), 4 1-4 2 (m, 1H, CHO), 5 0-5 1 (m, 2H, CH₂=CH), 5 6, 5 7 (2s, 1H, CHCl₂), 5 7-5 8 (m, 1H, CH=CH₂), ¹³C-NMR (CDCl₃) 20 55, 20 6 (CH₃), 31 9, 32 3, 33.85, 33 9 (CH₂CH₂C), 41 0 (CH₂CH=C), 77 4, 77 6 (CHO), 77 9, 78 5 (CHCl₂), 87 9 (CO), 119 0, 119 2 (CH₂=CH), 132.5, 132 6 (CH=CH₂), MS, *m*/z 171 (M⁺+4-CH₂CH=CH₂, 4%), 169 (M⁺+2-CH₂CH=CH₂, 28), 167 (M⁺-CH₂CH=CH₂, 43), 125 (14), 91 (10), 87 (CHCl₂+4, 5), 85 (CHCl₂+2, 22), 83 (CHCl₂, 39), 77 (17), 69 (13), 67 (23), 65 (14), 56 (12), 55 (30), 53 (22), 51 (17), 43 (39), 42 (19), 41 (100), 40 (13), 39 (94) Anal Calcd. for C₉H₁₄Cl₂O C, 51 69, H, 675 Found C, 51 4, H, 69 ¹⁶

REFERENCES AND NOTES

- 1 Mori, K Tetrahedron 1989, 45, 3223
- 2 Nakada, N, Kobayashi, S, Ohno, M, Iwasaki, S, Okuda, S Tetrahedron Lett 1988, 29, 3951
- 3 Wakefield, B J Organolithium Methods, Academic Press London, 1988
- 4 Fujisawa, T, Mori, T, Hıguchi, K, Sato, T Chem Lett 1983, 1791
- 5 Ralston, CL, Salem, G The Chenustry of the Metal-Carbon Bond, Hartley, FR Ed, John Wiley and Sons Chichester, 1987, vol 4, p 209
- 6 Bolitt, V, Mioskowski, C, Falck, J R Tetrahedron Lett 1989, 30, 6027
- 7 Boivin, T L B Tetrahedron 1987, 43, 3309
- 8 Barluenga, J., Llavona, L., Concellón, J. M., Yus, M. J. Chem. Soc., Perkin Trans 1 1991, 297
- 9 Barluenga, J., Llavona, L., Yus, M., Concellón, J. M. Synthesis, 1990, 1003
- 10 Barluenga, J, Fernández-Simón, JL, Concellón, JM, Yus, MJ Chem Soc, Perkin Trans 1 1989, 77 and references cited therein
- 11 Creary, X J Org Chem 1987, 52, 5026
- 12 Nicolau, KC, McGarry, DG, Somers, PK, Kim, BH, Ogilvie, WW, Yiannikouros, G, Prasad, CVC, Veale, CA, Hark, RR J Am Chem Soc 1990, 112, 6263
- 13 Schitt, A, Reissig, HU Synlett, 1990, 40
- 14 Bruckner, C, Holzinger, H, Reissig, HU J Org Chem 1988, 53, 2450
- 15 Kalinowski, HO, Berger, S, Braun, S ¹³C-NMR Spectroscopie, Georg Thieme Verlag Stuttgart, 1984
- 16 We thank Dr P Bernad (Servicio de Espectroscopía de Masas, Universidad de Oviedo) for spectrometric mass determinations